Throwing Fuel on the Fire

This week I will continue to point out the folly of increasing density toward realizing sustainability. Before I get started, I’d like to thank all of the folks who’ve taken a moment to send me a message about the blog. I really appreciate the comments and great feedback I’ve received, particularly from non-planners. I urge you to continue thinking critically about the content I introduce here, and don’t be afraid to get a conversation going in the comments section!

Additionally, I’d like to mention that I attended the Age of Limits Conference in Artemas, Pennsylvania over the weekend. The conference was held at an “interfaith sanctuary” which amounted to a campground, farm, ranch, and nature preserve – a nice, bucolic setting. It was hot and humid all weekend, and all of the presentations occurred outdoors within open air pavilions. The speakers included John Michael Greer and Dmitri Orlov, among others. There were about 60 attendees there, mostly from the eastern half of the country, but all regions were represented. The conference was pretty informal which gave attendees frequent opportunities to mix and meet with the presenters. I had a delightful chat with Greer for quite a bit about his books and influences. I enjoyed the conference very much and plan on going next year if they decide to host it again.

As you know, I’ve spent the last few weeks seeking to upend a persistent and entrenched myth within insular planning that the pursuit of sustainability can best be boiled down to “density good, sprawl bad”, as if these were two endpoints on a continuum. This myth presupposes that New York City, for example, represents the ideal sustainable arrangement of living.

Last week, I suggested that I would be discussing what I believe is the true nature of the relationship between density and sprawl in this week’s post. However, after having read over that post again, I feel that my criticism of density was incomplete and required more evidence and clarification. After all, I want to make it overwhelmingly clear that by criticizing density I am not advocating a position even remotely resembling that of Joel Kotkin or other suburbanization apologists.

Now, everybody who moves to a bigger city likes to feel that by doing so they lessen their impact on the environment. And insular planning gives them absolutely no reason to think that they’re not. But last week I showed how studies of urban metabolism reveal higher density to be a counterproductive strategy to realizing sustainability.

The research of Geoffrey West and his colleagues demonstrate that increases in urban density relate to infrastructure sublinearly; that is to say that as cities increase in size, the infrastructure costs per capita fall. However, they also found that increases in urban density relate to consumption superlinearly; that is, as cities increase in size, consumption per capita rises. In short, more-densely populated cities allow urbanites to leverage greater infrastructural efficiencies into a higher material standard of living which more than offsets the environmental benefits of moving to the city in the first place.

I described this process as a positive feedback loop of urbanization:

denser population –> greater economies of scale –> increased production –> greater affluence –> higher rates of consumption –> greater ecological impact, higher urban metabolism and inducement to densify further

In essence, as cities get bigger their metabolisms proportionally increase, not decrease. Correspondingly, that means more consumption and more energy and material throughput – hence, less sustainability. By ignoring all of the ramifications of increasing density, insular planning is working against the interests of posterity. Ecologically, this is a dead end strategy that will end in tears, and worse.

I’m going to take a moment to elaborate on the mechanics of the positive feedback loop described above to show the faultiness of insular planning’s policy goal of increasing density. What you’ll see is that increasing levels of density are correlated with higher rates of ecological impact, not lower.

It’s instructive and worth noting at the outset that the positive feedback loop shown above loosely correlates with Paul Ehrlich’s I=PAT formula, where I (impact) = P (population) x A (affluence) x T (technology). In other words, the more populated (and densely populated), affluent and technologically endowed a given city, state, nation, or world, the more ecological impact it delivers onto the environment.

The first variable, population (P) is important because it serves as a multiplier of the other two variables affluence (A) and technology (T). And as Geoffrey West’s research shows us, this variable is not static, but intensifies as density increases.

Cities with higher populations and densities – metastatic cities – offer greater economies of scale than areas with low populations and densities – rural areas. Over history people have continuously leveraged the economies of scale that increasingly large cities afforded them by reinvesting those efficiency gains back into the flow structures of society. These flow structures include the social, technological, economic, and physical organization of society in terms of its population, occupations, diversity, institutions, and functions.

Cities with higher populations and the greater economies of scale they afford contribute to higher rates of production and higher rates of affluence. One of the main economies of scale cities offer is that of specialization. With such a large amount of people collected in one spot, people tend to recognize the benefits of dividing labor and specialization of different tasks. This is reflected in the economic phenomenon of comparative advantage, which emphasizes “doing what you do best and trading for the rest.”

In other words, by specializing and then trading for the services of those who specialize in something else, more can be produced overall than would otherwise be possible. And, roughly speaking, this production of additional goods and services per capita translates into greater wealth per capita than would otherwise be possible.

The opposite is true too. You might notice for example that there are no valets at roadside diners. The reason of course is because rural areas don’t have the population densities necessary to support specialization to the degree that larger cities do, and correspondingly don’t produce as much per capita and hence remain poorer by comparison.

That leads to the second variable, affluence (A). Due to their higher affluence, metastatic cities are consumption hotspots relative to their rural surroundings: more goods and services are supplied and consumed there per capita than in rural locations. This relative affluence offsets any environmental benefits that may be gained by lower per capita costs of infrastructure in metastatic cities.

For instance, though affluent metastatic city residents may be driving less than their rural counterparts, they have increased consumption in nearly every other category of goods and services. Whatever savings are being achieved by not owning a car are more than counterbalanced by the purchase of increased airplane flights, take-out meals, clothing, and other discretionary spending. In short, all the money gets spent one way or another on stuff that requires energy for its manufacture, shipping, use, maintenance and disposal.

Additionally, this relative affluence leads to a greater likelihood of population autonomy. Smaller households have larger per-capita rates of consumption than small ones. For example, three people living in three apartments have to own three vacuum cleaners, while a family of three people owns only one. Or, this relative affluence can indirectly result in higher rates of resource waste, as the affluent can afford to be more wasteful than the poor.

In short, the societal consumption driven by higher rates of affluence — our collective desire for technological gadgetry, fancy coffee drinks and the latest fashions — more than outweighs the ecological benefits of local mass transit.

Cities with higher rates of consumption negatively affect the environment at greater rates than cities with lower rates of consumption. Affluence insulates the relatively wealthy from direct ecological impacts. When we look around us in metastatic cities, we often do not see the direct ecological impacts being borne by others including the poor, future generations and other species. For example, much manufacturing has moved offshore and taken with it the direct evidence of ecological degradation that metastatic cities require for their operation. Yet, this manufacturing is still being performed (though with less environmental regulation), and the impacts are still being generated. It’s just that they are now embedded in the available energy and resources we enjoy which buoy our standard of living.

In this same vein, when we think about ecological impacts, we generally only think about the energy and resources that we can see being used by our own eyes in real time, directly. For example, you might think that most of our transportation costs and impacts are for moving ourselves around. However, most of our ecological impact is not from the available energy and resources that we pay for directly and the emissions that result; most of it is from the available energy, resources, and emissions associated with the creation and transportation of consumables – the indirect ecological impacts of consumption.  A recent study* found that an estimated 44% of CO2 emissions are tied up in the manufacture, packaging, transportation, and disposal of the goods we consume – much more than the carbon impact of moving ourselves around (which is still high). That same study found that only approximately 10% of an average household’s ecological impact is from direct impacts.

Perhaps you’re not surprised to hear that overconsumption is a huge contributing factor to ecological impacts. However, the insidious thing about it is that those effects are seamlessly embedded in everyday life and experience within the metastatic city and therefore are easy to forget about.

And now we arrive at the final variable, technology (T). Cities with higher rates of technological application negatively affect the environment at greater rates than cities with fewer technological applications. That’s largely because technological applications either directly or indirectly utilize fossil fuels which themselves have harmful effects on the environment.

Additionally, greater relative affluence in metastatic cities allows for the purchase of more technological applications than would otherwise be possible in rural, less affluent areas. And when you consider the preponderance of these applications – all the automobiles, computers, dishwashers, leafblowers, and so forth – you begin to understand the scale of the issue.

All of these fossil fuel-reliant technologies result in increased CO2 emissions. Therefore, it is unsurprising that metastatic cities have disproportionately higher CO2 emissions than rural areas: the 50% of humans who live in metastatic or metastasizing cities are responsible for 75% of all CO2 emissions. It’s no coincidence that CO2 gas domes in China and the US hover over metastatic cities – that’s where the people are, after all. And the CO2 gas domes that exist in rural areas are from power plants that supply metastatic cities with their electricity.

The I=PAT equation implies that the availability of cheap fossil fuels have blown the positive feedback loop of urbanization into a hypertrophic mode that’s causing ecological degradation on a scale never before possible in human history.

A natural question at this point might be if cities are capable of existing sustainably at all. Of course they can, because they did so in the past. We planners need to begin crafting policies which advocate for moderate density and figure out ways to de-scale outsized metastatic cities. This doesn’t have to mean getting “back to the land” necessarily, though there might be some of that. Certainly it won’t entail further suburbanization, however.

Additionally, the I=PAT equation shows that policies which support increasing population density, rising affluence, and expansion of technological application will only serve to further exacerbate ecological impact. Doing so is akin to throwing fuel on the fire.

I recognize these findings are quite challenging to the preconceptions of insular planning. But in order to establish sustainable living arrangements, we need to acknowledge that simply packing people high and tight and expecting public transportation to offset the subsequent effect of increased density is not going to have the desired effect of reducing ecological impacts.

I do acknowledge that density is important up to a certain point. However, I’m also suggesting that a little nuance is called for, depending upon the environmental limits imposed on a given city by its supporting region. Just recommending greater density ad infinitum is a foolish, intellectually dishonest policy stance totally out of line with the limitations of ecological reality.

Lucky for us, there are examples throughout history of authentic cities – that is, moderately-dense urbanized areas that command a stable range ecological impacts commiserate with resources available regionally in real time. In the not-too-distant past these living arrangements served as communities which deepened our psychological world, provided a cosmopolitan atmosphere for artistic and cultural development, fostered education, and enabled the development of appropriate technologies which improve the lives of people – all in a vibrant, walkable, fixed spatial dimension with a sense of place. Not only are authentic cities sustainable, they present a more liveable arrangement of living than metastatic cities.

Perhaps we could learn a bit from these historic examples in imagining a way forward. If applied correctly, that knowledge could go a long way in making the transition process less painful. In future posts I will discuss appropriately-scaled authentic cities of the past and consider lessons we can learn from them.

It sure took a long time to get here, but now I’m set to discuss why you shouldn’t fall for the old “density vs. sprawl” false dichotomy. In doing so, I’m going to cover a little more ground relating to density including the relevance of embeddedness, the side effects of urban metastasis, and the confusion within insular planning between the concepts of liveability and sustainability.

*Consuming Australia, Australian Conservation Foundation study, 2007

Tagged ,

4 thoughts on “Throwing Fuel on the Fire

  1. Lucas says:

    Have forwarded this and the previous posting to a young friend at UH Manoa in the Resource Management program with a minor in Urban planning.

  2. theozarker says:

    Hi Glaucus, I’m looking forward to your talking more about what you call authentic cities. I always sort of pictured (most of) the metastatic cities – at least the ones that survive – settling back into boroughs or neighborhoods that were, in fact, more like relatively independent small cities within the boundaries of the “city”. Not like suburbs that surround, but are separated by distance. Just each burough becoming more autonomous and self-supporting. Not sure if you can plan for that or whether it will just revert back to it over time. So I’m eager to read what you see when you talk about authentic cities. Will check back after Thursday.


    • Hi Linda,

      Thanks for the thoughtful comment. You’re definitely on the right track in anticipating what authentic cities are all about. I am really looking forward to spending more time writing about them, but for the moment I’m in the middle of critiquing insular planning. I feel like that needs to happen first so that folks understand where I’m coming from when I talk about transitioning from metastatic arrangements of living to authentic ones. Otherwise, they might resist it because they would not have had a decent explanation of the severity of the predicament our metastatic cities face. Please be patient as I methodically work through this material! I’ll be focusing on authentic cities before you know it!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: